A z e r a
Math2.Org Math Tables: Complexity
Justifications that e i = cos() + i sin()
Justification #1: from the derivative
Consider the function on the right hand side (RHS)
f(x) = cos( x ) + i sin( x )
Differentiate this function
f ' (x) = -sin( x ) + i cos( x) = i f(x)
So, this function has the property that its derivative is i times the original function.
What other type of function has this property?
A function g(x) will have this property if
dg / dx = i g
This is a differential equation that can be solved with seperation of variables
(1/g) dg = i dx
ln| g | = i x + C
| g | = e i x + C = e C e i x
| g | = C2 e i x
g = C3 e i x
So we need to determine what value (if any) of the constant C3 makes g(x) = f(x).
If we set x=0 and evaluate f(x) and g(x), we get
f(x) = cos( 0 ) + i sin( 0 ) = 1
g(x) = C3 e i 0 = C3
These functions are equal when C3 = 1.
Therefore,
cos( x ) + i sin( x ) = e i x
Justification #2: the series method
(This is the usual justification given in textbooks.)
By use of Taylors Theorem, we can show the following to be true for all real numbers:
Sin x = x - x 3 /3! + x 5 /5! - x 7 /7! + x 9 /9! - x 11 /11! + .
Cos x = 1 - x 2 /2! + x 4 /4! - x 6 /6! + x 8 /8! - x 10 /10! + .
E x = 1 + x + x 2 /2! + x 3 /3! + x 4 /4! + x 5 /5! + x 6 /6! + x 7 /7! + x 8 /8! + x 9 /9! + x 10 /10! + x 11 /11! + .
E^(
i) = 1 + (i) + (i) 2 /2! + (i) 3 /3! + (i) 4 /4! + (i) 5 /5! + (i) 6 /6! + (i) 7 /7! + (i) 8 /8! + (i) 9 /9! + (i) 10 /10! + (i) 11 /11! + .
I 1 = i
i 2 = -1 terms repeat every four
i 3 = -i
i 4 = 1
i 5 = i
i 6 = -1
etc.
E^(
i) = 1 + i - 2 /2! - i 3 /3! + 4 /4! + i 5 /5! - 6 /6! - i 7 /7! + 8 /8! + i 9 /9! - 10 /10! - i 11 /11! + .
E^(
i) =
[1 - 2 /2! + 4 /4! - 6 /6! + 8 /8! - 10 /10! + . ]
+
[i - i 3 /3! + i 5 /5! - i 7 /7! + i 9 /9! - i 11 /11! + . ]
E^(i) = cos() + i sin()
E^(
i) = -1 + 0i = -1.
E^( i) + 1 = 0. Special case
Which remarkably links five very fundamental constants of mathematics into one small equation.
Again, this is not necessarily a proof since we have not shown that the sin(x), cos(x), and e x series converge as indicated for imaginary numbers.
В итоге: Math2.Org Math Tables: Complexity Justifications that e i = cos( ) + i sin( ) Justification #1: from the derivative Consider the function on the right hand side (RHS) f(x) = cos( x
Комментариев нет:
Отправить комментарий
Примечание. Отправлять комментарии могут только участники этого блога.